

Figure 4-4 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Unit- 5 Sex Determination

RUSHIKESH G. PAWAR Asst. Prof. & HoD, Dept. of Zoology

S. A. Degree College, Naregal - 582119

Sex Determination

Mechanism of development of sexual characters in an organism

The act of determining or knowing the organism or embryo to develop into a male or female is called sex determination or differentiation of sex

Majority of animals exhibit sexual dimorphism through distinct external characters

Plumage difference between cock and hen, peacock and peahen
 The hair pattern difference between lion and lioness
 A man and women are the best examples of sexual dimorphism

Aristotle (ca. 335 B.C.):

Sex is determined by "the heat of the male partner during intercourse"

Vesalius (~ 1543) held the same view

During the 1600s and 1700s:

Females were seen as producing eggs that could transmit parental traits, and the physiology of sex organs began to be studied

Until 20th century:

The environment – temperature and nutrients, in particular – was believed to be important

In 1900:

Rediscovery of Mendel's work

In 1902:

Rediscovery of the sex chromosomes (McClung)

In 1905:

Establishment of the correlation (in insects) of the female sex with XX sex chromosomes and the male sex with XY or XO chromosomes (Stevens; Wilson)

- A specific nuclear component is responsible for directing the development of the sexual phenotype
- Evidence accumulated that sex determination occurs by nuclear inheritance rather than by environmental influence

Today:

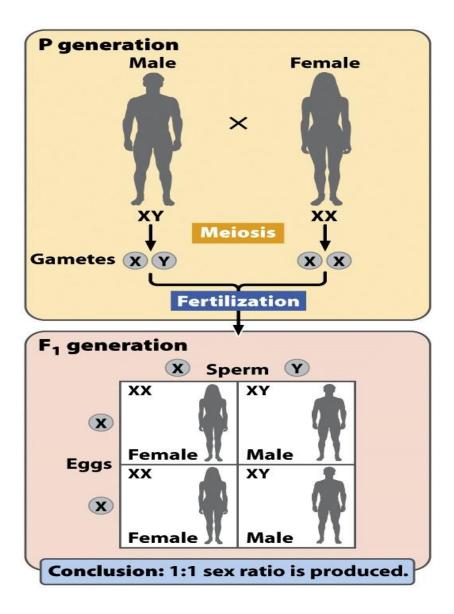
Both environmental and internal mechanisms of sex determination can operate in different species

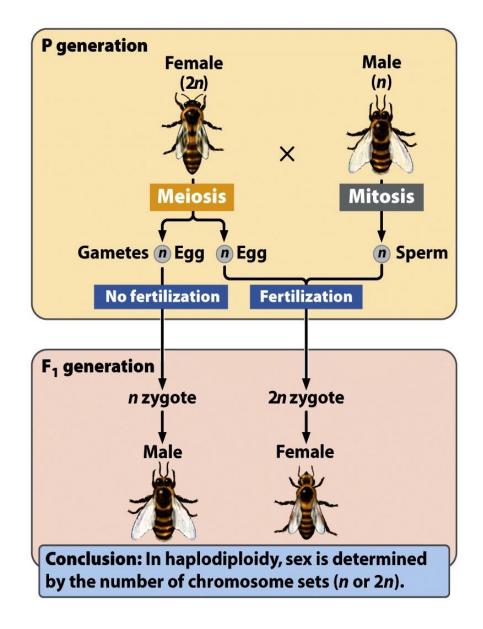
- **1. Genotypic sex determination**
- 2. Environmental sex determination

ENVIRONMENTAL SEX DETERMINATION

Sex Determination : Enviroment

Sex Determination : social


Sex Determination : chance


 Sex Determination : number of offspring

Genotypic sex determination

Sex determination is associated with sex chromosomes that are different between male and female individuals

- 1. Sex chromosomes play a decisive role in the inheritance and determination of sex.
- 2. Two methods:
 - 1. Y chromosome mechanism (e.g., humans and other mammals)
 - 2. X chromosome-autosome balance system (e.g., *Drosophila*, *Caenorhabditis elegans* nematode)

•XX-XO system:

•XX – female
•XO – male
•grasshoppers

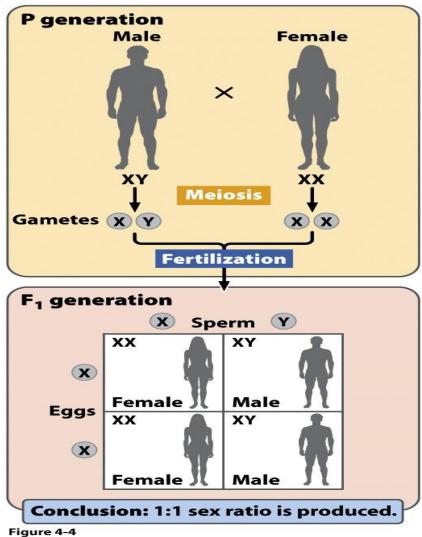
•XX-XY system:

•XX – female •XY – male •mammals

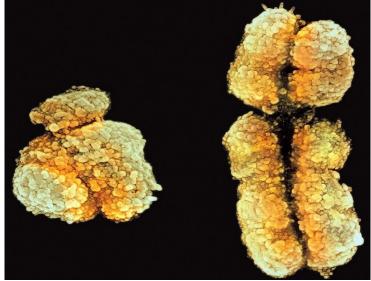
•ZZ-ZW system:

- •ZZ male
- •ZW female
- •Birds, snakes, butterflies, some amphibians, and fishes

•Haplodiploidy system:


Haploid set – male
Diploid set – female
Bees, wasps, and ants

Drosophila uses X chromosome autobalance to determine sex.


Designated X and Y in species in which the male is heterogametic (XY).

W and Z in species in which the female is heterogametic (WZ).

Sex determination in Humans

Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

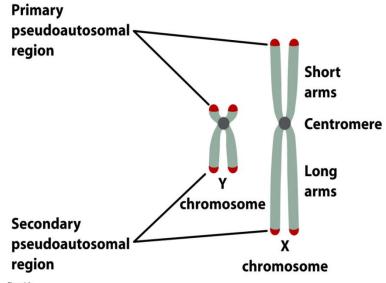
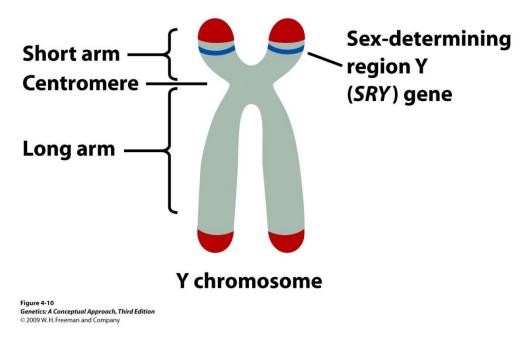
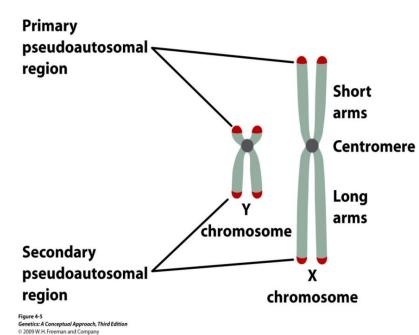


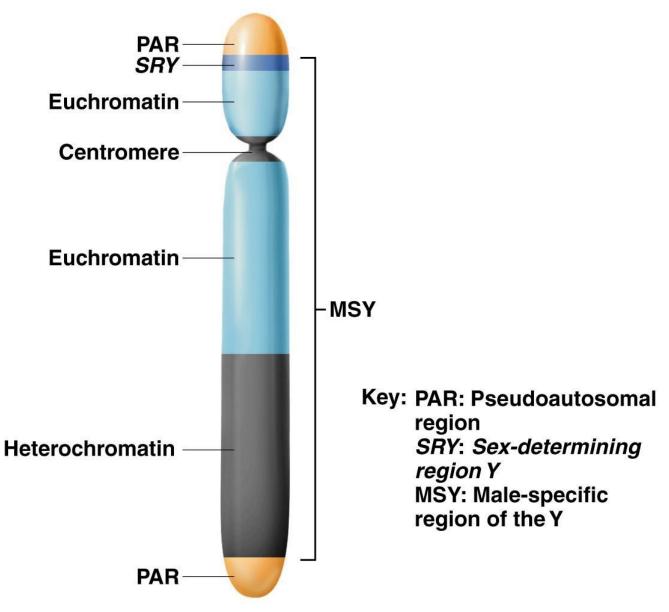
Figure 4-5 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

- 1. Fertilization and determination of genetic sex
- 2. Formation of organs common to both the sexes


A. the Gonadal ridges (4-5 weeks)

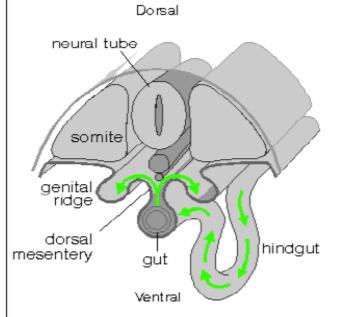
B. the Internal ducts (6-7 weeks)


C. the External genitalia (6-7 weeks)


- 3. Gonadal differentiation
- 4. Differentiation of the internal ducts and external genitalia

SRY gene on the Y chromosome determines maleness

During early embryonic development, there is a **sexually indifferent stage** in which the embryo has the potential to develop either a male or a female structures at about sixth week of gestation.

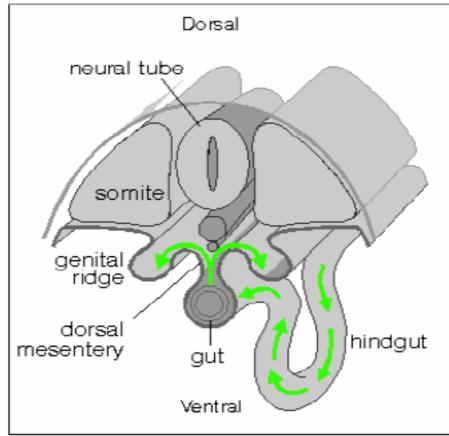


Copyright © 2009 Pearson Education, Inc.

Genes determining development of the bi-potential Gonad

The initial formation of the bi-potential gonad (from uncommitted urogenital ridge) requires the function of Wilm's tumor (WT1) and Steroidogenic factor (SF-1).

Both are transcription factors and important for both gonadal and kidney development

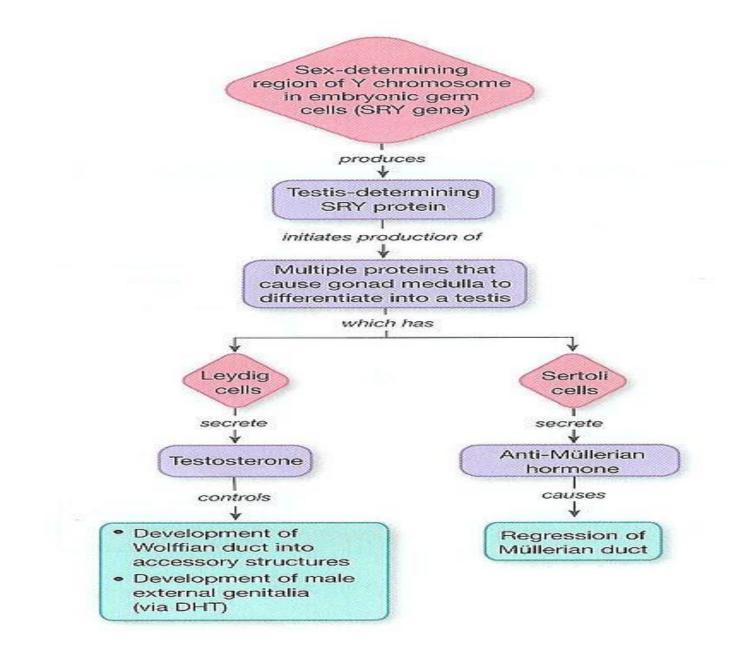

If the embryo is XY (genetic male), the presence of the **SRY gene** (sex determining region of the Y chromosome) will direct the gonads to develop as testes.

In the absence of a Y chromosome and SRY gene, the gonads develop as ovaries.

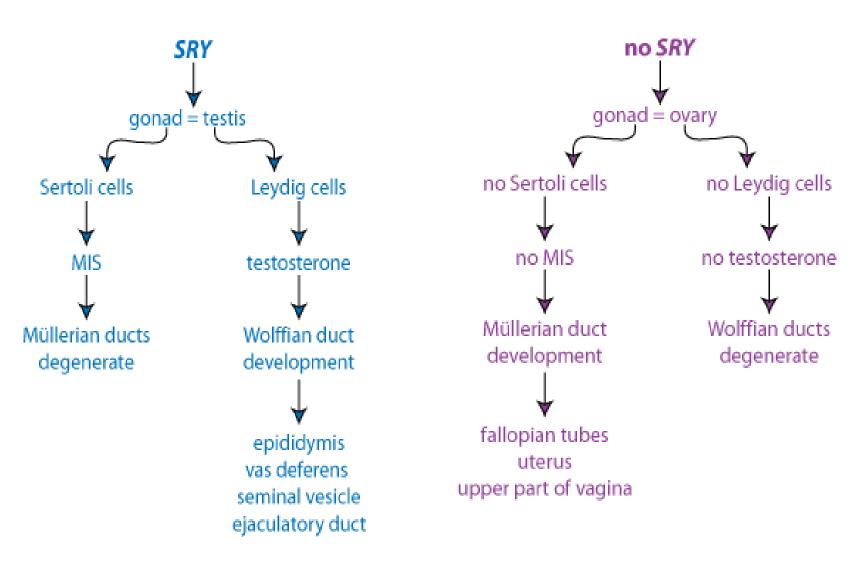
SF-1: Steroidogenic factor-1. A transcription factor essential in gonadal ridge determination.

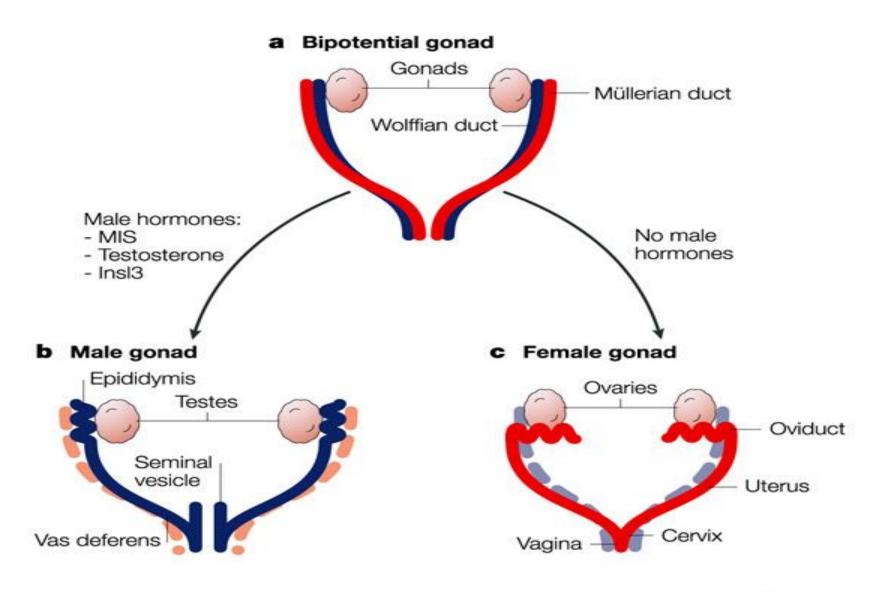
WT-1: Wilm's Tumor 1, a transcription factor essential in **urogenital ridge determination**

Internally, adjacent to developing gonad, there are two primitive ducts that can give rise to either the male or the female reproductive tracts.



The Wolffian (mesonephric) ducts are more medial. The Müllerian (paramesonephric) ducts are more lateral, but then fuse in the midline more caudally.


SEXUALLY INDIFFERENT STAGE (6 weeks)


Wolffian (mesonephric) duct develops into: epididymis vas deferens seminal vesicle ejaculatory duct

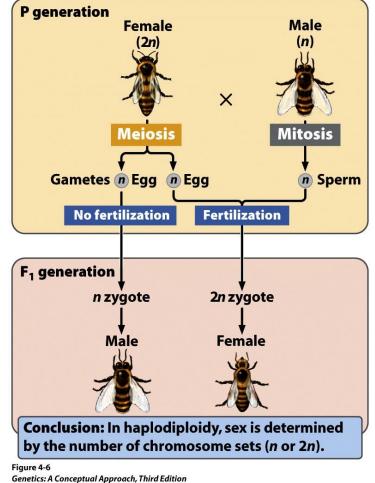
MALE (XY)

FEMALE (XX)

Nature Reviews | Genetics

Human prenatal sexual differentiation			
Fetal age (weeks)	Size (mm)	Sex differentiating events	
0	Blastocyst	Inactivation of one X chromosome	
4	2-3	Development of Wolffian ducts	
5	7	Migration of primordial germ cells in the undifferentiated gonad	
6	10-15	Development of Müllerian ducts	
7	13-20	Differentiation of seminiferous tubules	
8	30	Regression of müllerian ducts in male fetus	
8	32-35	Appearance of Leydig cells. First synthesis of testosterone	
9	43	Total regression of müllerian ducts. Loss of sensitivity of müllerian ducts in the female fetus	
9	43	First meiotic prophase in oogonia	

10	43-45	Beginning of masculinization of external genitalia	
10	50	Beginning of regression of wolffian ducts in the female fetus	
12	70	Fetal testis is in the internal inguinal ring	
12-14	70-90	Male penile urethra is completed	
14	90	Appearance of first spermatogonia	
16	100	Appearance of first ovarian_follicles	
17	120	Numerous Leydig cells. Peak of testosterone secretion	
20	150	Regression of Leydig cells. Diminished testosterone secretion	
24	200	First multilayered ovarian follicles. Canalisation of the vagina	
28	230	Cessation of oogonia multiplication	
28	230	Descent of testis	


Sex determination in Drosophila

The Y chromosome in drosophila – unlike that in humans – play no role in sex determination

Instead, the sex of the fly is determined by the ratio of X chromosomes to autosomes

But, the Y chromosome is very essential to provide the male fertility.

Bridges in 1926 Normal diploid flies have a pair of sex chromosomes either XX or XY, and three pair of Autosomes denoted by AA

© 2009 W. H. Freeman and Company

Sex determination in Drosophila melanogaster:

- Sex determination in Drosophila is quite different from humans
- Drosophila has eight chromosomes (n = 4)
- Three pairs of autosomes and one pair of sex chromosomes
- Drosophila possesses XX and XY sex chromosome similar to human
- Unlike human beings, Y chromosome does not have any role in determining the sex of individuals
- Sex in Drosophila is determined by the ratio of number of X chromosomes to that of the number of sets of autosomes

GENIC BALANCE THEORY

Sex determination in Drosophila melanogaster:

In simpler terms, sex determination in *Drosophila* is achieved by a **balance** of female determinants on the X chromosome (X) and male determinants on the autosomes (A).

- This type of sex determination is called Genic Balance System
- Genic balance system was proposed by Calvin Bridges in 1926
- Genic balance system of sex determination also explains the reasons for the occurrence of sexual variants in the fruit fly population such as inter-sex, metamales and metafemales apart the normal male and female individuals

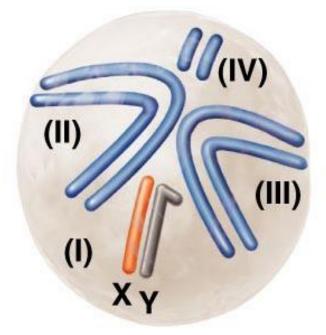
GENIC BALANCE THEORY

Sex determination in Drosophila melanogaster:

- There are many suggestions regarding the exact molecular mechanism genic balance system of sex determination in *Drosophila*
- The exact mechanism is still unknown
- Studies shown that the X chromosome contains female determining factors
- Autosomes contains male determining factors
- Y chromosome in Drosophila does not have any role in sex determination.

GENIC BALANCE THEORY

Sex determination in Drosophila melanogaster:


The table shows the formation of sexual variants in *Drosophila* according to the X/A ratio

Sl. No.	Number of X chromosomes	Number of Sets of Autosomes	X / A ratio	Sex of the individuals
1	3	2	3 / 2 = 1.50	Metafemale
2	4	3	4 / 3 = 1.33	Metafemale
3	4	4	4 / 4 = 1.00	Normal Female
4	3	3	3 / 3 = 1.00	Normal Female
5	2	2	2 / 2 = 1.00	Normal Female
6	2	3	2 / 3 = 0.66	Intersex
7	1	2	1/2=0.50	Normal male
8	1	3	1 / 3 = 0.33	Metamale

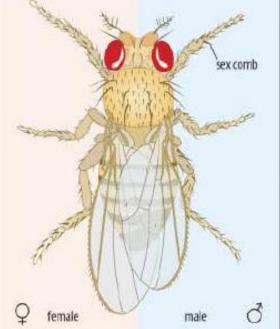
Sex expression in Drosophila in relation to X/A ratio Sex Index

Ploidy	Number of X chromosomes (=X)	No. of Autosomal sets (=A)	Sex Index (X/A)	Expression of sex
2n	3	2	3/2=1.5	Super-female
3n	4	3	4/3=1.33	Super-female
4n	4	4	4/4=1.0	Female
3n	3	3	3/3=1.0	Female
2n	2	2	2/2=1.0	Female
4n	3	4	3/4=0.75	Intersex
3n	2	3	2/3=0.67	Intersex
2n	1	2	1/2=0.5	Male
4n	2	4	2/4=0.5	Male
3n	1	3	1/3=0.33	Super-male

Normal diploid male

2 sets of autosomes

Chromosome composition	Chromosome formulation	Ratio of X chromosomes to autosome sets	Sexual morphology
2.6	3X/2A	1.5	Metafemale
»»	3X/ _{3A}	1.0	Female
»r	2X/2A	1.0	Female
	3X/4A	0.75	Intersex
Mic	2X/ _{3A}	0.67	Intersex
2%	X/2A	0.50	Male
2°C	XY/2A	0.50	Male
Mig-	XY/3A	0.33	Metamale

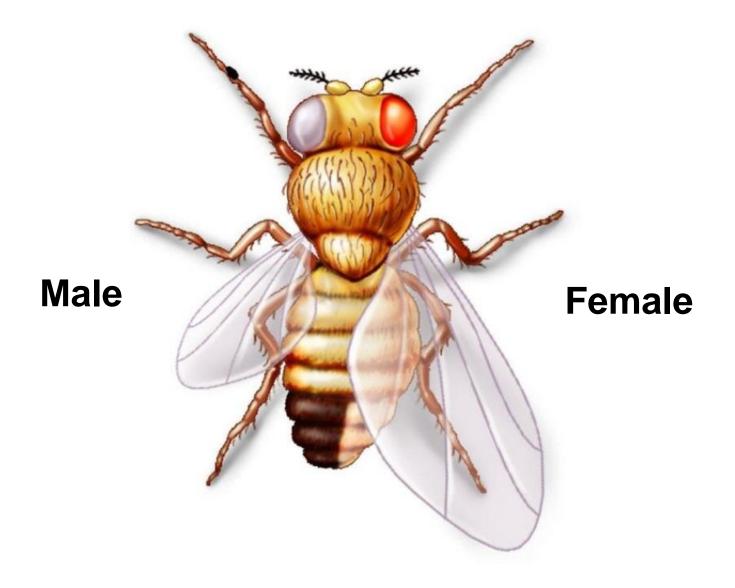

Copyright © 2009 Pearson Education, Inc.

Sex Mosaic in Drosophila

Sex mosaic - Combination of male and female features in the body of an individual.

Drosophila flies (1 in 2000) have male tissues in one part of the body and female tissues in other.

Individuals with such sex mosaic are known as gynandromorphs or gynanders.


Three patterns of sex mosaic may be found in Drosophila:

1. Bilateral sex mosaic - one side of the fly is male and the other side is female. This is the most common type of sex mosaic.

2. Antero-posterior sex mosaic - the front half of the fly is one sex and the rear half of the other sex.

3. Sex mosaic in Patches - Sometimes, only a quarter of the body is male, and rest is female or just a small patch of tissues may be male and rest of the body is female.

Bilateral Sex Mosaic in Drosophila

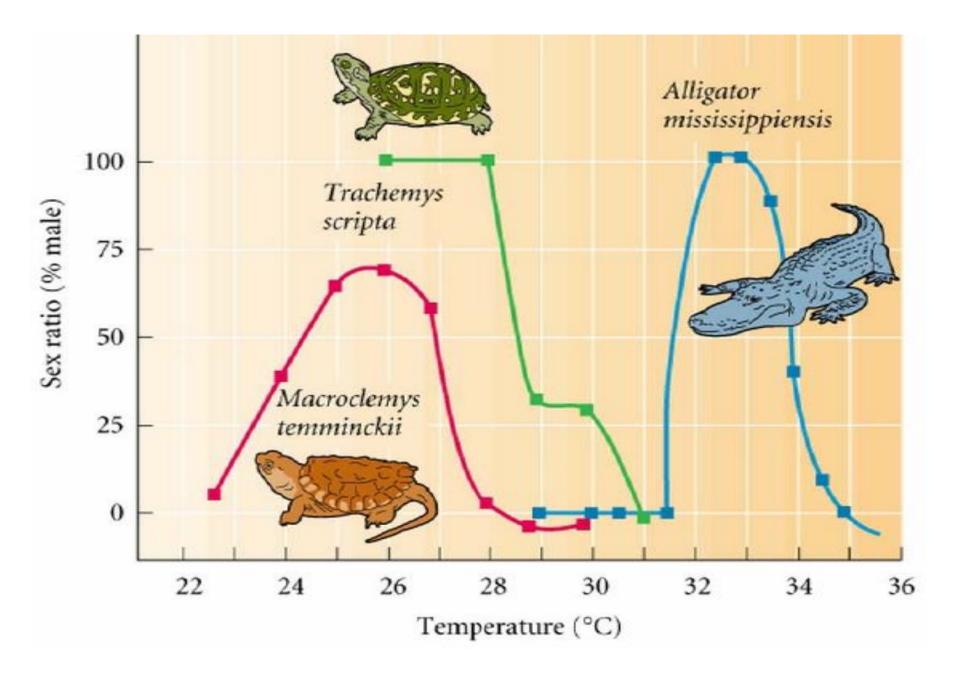
Sexual Dimorphism in Butterfles

Sex Determination : social

Sex Determination : chance

 Sex Determination : number of offspring

Temperature-dependent sex determination (reptiles)


Sex of most snakes and most lizards

Sex of most turtles and all species of crocodilians environment (temperature)

Turtles use temperature

> 32°C produces females
< 28°C produces males
28-32°C 50% male, 50% female

Body size:

Some fish are first male then female

Location:

Limpet's position in the stack

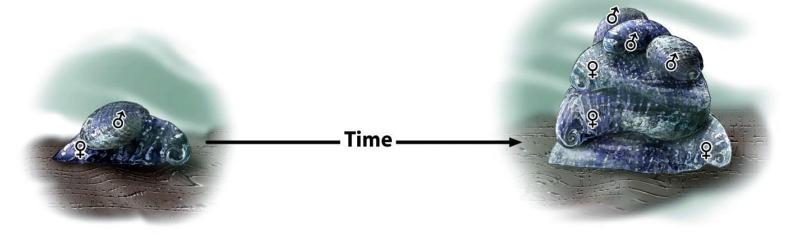


Figure 4-7 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company